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PARTIALLY CONSTRAINED IMPINGING JETS

ABSTRACT

Qualitative explanations of the motion of shaped charge liners have

been based on impact of two plane jets in which the moving fluid is

surrounded by four stagnant regions, all at the same pressure. Actually,

the motion is initiated by the difference between the high pressure in

the detonation products on one side of the liner and atmospheric pressure

on the other. This report considers symmetrical impact of two Jets, each

partially constrained on one or both sides, in which the stagnant regions

fre not all at the same pressure.
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1. INTRODUCTION

Treatises on hydrodynamics generally contain discussions of two standard

examples of plane incompressible jet flows; viz.:

a. Efflux of liquid with high pressure at infinity from a reservoir

with straight walls into a jet surroundcd by stagnant fluid at lower pressure;

b. Impact of two jets, in which the moving fluid is surrounded by four

regions of stagnant fluid, all at the same pressure.

Contemplation of these examples suggests the problem, to determine the fol-

lowing flow:

c. Impact of two jets, each partially constrained on one side by straight

walls, in which the jets are also partially bounded by four regions of stagnant

fluid, not all at the same pressure.

The symmetrical form of (c), shown schematically in Fig. 1 (with an inflection

point A4 on the high pressure boundary), will be discussed in this note.

A perfectly obvious generalization of (c) is

d. Impact of two jets, each partially constrained on both sides by

straight walls, in which the jets are also bounded by four regions of stagnant

fluid, not all at the same pressure.

The symmetrical form of this flow is discussed at the end of this note by

straight forward modifications of the mathematical apparatus used to describe (c).

The flows to be constructed are interesting for their own sakes as jets

that can be described explicitly in relatively simple terms. Additional in-

terest might be stimulated by the following considerations. Flows of type (b)

have been used to suggest a qualitative explanation of the motion of the liner

of a shaped charge. In reality, the motion is produced by the difference be-

tween the high pressure in the detonation products on one side of the liner and

atmospheric pressure on the other side. Furthermore, at an intermediate stage

only part of the liner has collapsed or begun to collapse, while the rest is

still rigid. In an admittedly imperfect way flows (c) and (d) more nearly

approximate these features than (b).
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We note also that various pressures, velocities, and widths are referred

to in Fig. 1, and four additional parameters will appear in the discussion

in the following sections. Let us suppose we have experimental measurements

of the angles @3 ) 04V the three widths hl, h3 , and h 5 , and assume we know p1
(which might be atmospheric pressure) and the density p of the jets. Then

we could apply the seven equations (2.3), (3.4) - (3.6), (4.4), (4.6), and

(4.8) to determine the four relatively uninteresting mathematical parameters

and the three important physical parameters p5' U1 , and U5 , (which will be

defined in equations 2.4 and 2.5).

2. MATHEMATICAL FORMULATION OF PROBLEM

Plane irrotational incompressible flow can be characterized by a complex

potential function

(2.1) ý(z) = + i*.

Here j(z) is an analytic function of the complex variable z = x + iy, 0 is
the velocity potential function, * the stream function, and

(2.2) w = u - iv = d4/dz

is the complex velocity. The pressure p within the jets is determined by

Bernoulli 's equation

(2.3) P + i Pw I = c -1stant

Conditions on the jet boundaries are characterized by

(2 .4 ) P = P a I ce = i , 5,

and thus I wl assumes corresponding constant values

(2.5) iwl U, a=l, 5.

To seek •(z) or w(z) directly in the z-plane is hopeless, since the

location of the jet boundaries characterized by (2.4) or (2.5) is not known

a priori. The classical artifice for overcoming this difficulty is to invert

(2.2) to determine

(2.6) z = f(w)

where f is an analytic function of w. Then straight-streamlines (walls, or

the axis of symmetry) have as their images in the w - or hodograph-plane seg-

ments of lines through the origin, and free jet boundaries correspond to arcs
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of circles (2.5) with centers at the origin. Thus the impinging jets of Fig. 1

map onto the interior of the region shown in Fig. 2. The circular cuts A A
and A appear as a matter of necessity, while the cut A A 6A5 has been in-

troduced for later convenience.

Boundary conditions and other relevant properties of f(w) can be determined

as follows. On the straight streamlines of Fig. 1 dz is parallel to 7 and dw

is parallel to w. Thus on all straight segments shown in Fig. 2

(2.7) Imw2 dz/dw = Imw2ft = 0

On the free jet boundaries, which are also streamlines, dz is again parallel

to 1', and or the circular arcs (2.5) dw is parallel to iw. Thus on all cir-

cular arcs shown in Fig. 2

(2.8) Re w 2dw/dz = Re w2 f (w) = 0

To guarantee finite non-zero jet widths at infinity in the z-plane, f(N,' should
I1 I I

have logarithmic singularities at A,A3,',A5. At A2,A2,A4,A4 and at A6 the

function f(w) sho,1.d be finite, and as a matter of convenience, arbitrarily

choose

(2.9) f(o) = 0.

3. CONFORMAL MAPPING OF HODOGRAPH IMAGE ONTO HALF-PLANE

As an aid to determining the functional form of w2 f (w) it will be con-

venient to map the interior of the curve shown in Fig. 2, slit along A5A6 , onto

a half plane. To do this, first note that

(3.1) W = log (w/U 1 )

maps the region in question onto the region with polygonal boundary shown in

Fig. 3. If we take account of symmetry, then by the Schwarz-Christoffel

formula,

(3.2) W 2 2 2x J [(2)~ 2 _ 2)] 0.5
[( 1( -a )(

where 1 < a 3, a < a will, for suitable choices of the positive parameters
4-= 5

a, a., a4, and a 5 yield the desired mapping onto the upper half of the t-plane.
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In the calculation of (3.2), use that branch of the integrand that is positive

for • > a5* For later reference we also note that

(3.3) 1 a Q %)U •= - _______. __ o.

11= (a•-•~) 0. =-

(3.5) a 21 -a -(a 2)] d = lo33 5

(3.6) a1 3 I a %~ a) ~ - -

.fa [t2 )(a 22 a2)(2 ] 0.5 3 ~

a35 (K2-lo) U /

(372I= a [(t'2l)(a2 t2 )(a2_t2)] 0.5 1 5

The constant a can be evaluated as follows. Since the only singularities

of dw/d • are at +1 , +_ a3, :ad a_ a,then

"+ I5 +4) = Ow+02+0)

where Cl, 02, and C are paths shown schematically in Fig.4, and C is a circle

33 5

II7 con•t >a. Clearly
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2jr

(dW/d4) dý = - Q -1 + ...)4• = " 2nic0

Since by (3.4) to (3.7), - 4ai (I + 13 + 14)= -4mi, this yields

(3.8) a = 2.

4. CONSTRUCTION OF f(w)

Recall that w 2f (w) is alternately real or pure imaginary on the segments

of the real axis of the t plane with end points A and AT , for y = 2, 3, 5.

Thus it must have branch points at these places, and should contain a factor

( r,2 - a3)S/2(t2 _ 2)t/2

where r, s, and t are odd integers. Since f should have logarithmic sin-

gularities at A1 , A8 and A', 5 = 3, 5, then df/dý should have simple poles at

the corresponding points. Since furthermore f should be finite at A2 and

A2 this suggests the form

S(2 05lO.

(4.1) w2 f (W) =
t~2 0 .5 W - 2t2- a2)"

2 _.2
The factor a 4 in the denominator will enable us to include the case

a4 = a in the following discussion. Now, by (4.1) and (3.3)

(4.2) df = 2 1
dt w t(t2 _a2)Q 2 a

where p > 0 merely determines the geometrical scale in the z = f(t) plane

Since w(av) = 0, then by (2.9) f(w(oo)) = f(0) = 0, and
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(4-3) f(Q) = Jo (df/dt)d .

The uniqueness of our choice for (4.1) can be shown as follows. Let us

multiply the left members of (4.1) and (4.2) by an analytic function H(Q).

To preserve the alternation of real and imaginary values of w2 f(w) on the

real axis, H must be real there. To prevent the introduction of new branch

points and singularities, H must have no singularities in the closed upper-

half plane, and the analytical continuation of H into the lower half plane

is also free of singularities. Hence H is constant.

It remains to show that f(w) has the desired properties at A1 , A6 , A,

and A . First note that • = 0 corresponds to w = U1. Thus by (3.1) and (3.2)

S= (w - U1 ) g(w - UI)

where g is an analytic function of w - U and g(O) # 0. Since df/dt has a

simple pole at t = 0, then f(w(t)) has a logarithmic singularity there, and

thus f(w) also has a logarithmic singularity at w = U1. A similar argument

determines the behavior of f at • = + a3 or * a4 , with the unimportant dif-

ference that, for example, (3.1) and (3.2) imply

(Q - a3) 0 "5  (w U5 e -ie3)h(w - U5 e 3)

where h is analytic, h(O) • 0, etc. Hence f(w) has the required logarithmic

singularities.

By (3.2), in the neighborhood of infinity

00

dW = _2 Z o c t-n
aS•-n

1

where cI = 1. Hence W = -2 log t + m(l/t) where m is an analytic function of

l/t. Then by (3.1)

w = t -2 n(l/l)

where n is analytic and n(O) /= 0. Then by (4.2)
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Idfd = t; 2 - 5k(l/l)

where k is analytic and k(O) = 0. Thus f(t) will be regular at oo.

The width of the jet at A1 in the z-plane can be determined by consid-

ering the expansions

df 23

dt Ula 2a2
13 5

fa 2 2 log +...f=c 2 2
U1a3 a,

Then the jump in Im log t at • = 0 yields for the width at A1

(4.4) hI =2 t/Ul2 a2

and rate of mass flow

(45)M = 2 PAp/a2a2

Similarly, at A3 or A3 we have widths

(4.6) h3 = 1 I/U5 a• (a - a2)

and rate of mass flow

(4.7) M3 = P A p/a (a2 - a2)

and at A5 and A the total width5 5

(4.8) h5 = 2 13 n/Ula2 (a2 - a )

and

(4.9) M5 = 2 0 A Pla2 (2 -

As we would expect from the law of conservation of mass

13



Finally, the ratio of the rate of mass flow at A1 to that at A5 is
2/ 2

(4.10) M/M5 = a/a, - 1

In Fig. 1 the straight walls were adjacent to the low pressure regions.

Would it be possible to place them adjacent to the high pressure regions?

If we proceed purely formally, we merely have to replace the simple poles of

df/dt at* a3 by simple poles at * 1. However, the following intuitive

considerations show that this process leads at least to an indeterminacy.

Suppose a flow of the desired type exists. For our modification consider

d log (df/dt)/dt = - w /w +..

Near the end of one wall the behavior of this logarithmic derivative is dom-

inated by the branch point at g = a3* But for a5 < k < a 4 , Iw /w < 0. Thus,

as one would expect, the streamline leaving the wall at A3 bends initially

toward the low pressure region, as shown in Fig. 5. Now, without changing the

flow field, we can extend the walls into the stagnant high pressure regions.

Since by appropriate changes of scale we can always make the gap between the

ends of the extended walls be of unit length, this means that the location of

the point of detachment A3 is indeterminate.

5. PARTIALLY CHANNELLED IMPINGING JETS

To produce flows with impinging jets that are partially bounded by

straight walls on both sides, it will suffice to replace the simple poles of

df/dt at * a 3 by simple poles at * a 7 , where I < a7 < a . Now (4.2) becomes

(5.1) df= 23 1

while (3.2) remains unchanged. The presence of the additional parameter a7

will make it possible to vary the location of A3 in Fig. 6, for example, while

the locations of A2 and A4 and the directions of the walls are held constant.
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The calculation of the various Jet widths and rates of mass flow are perfectly

straightforward exercises which we shall not repeat. It should be remarked

that if there is an inflection point A the wall " can be extended into the

high pressure region again, just as in the discussion of Fig. 5.

SH.GIESE
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